Mefloquine-induced disruption of calcium homeostasis in mammalian cells is similar to that induced by ionomycin.

نویسندگان

  • D Caridha
  • D Yourick
  • M Cabezas
  • L Wolf
  • T H Hudson
  • G S Dow
چکیده

In previous studies, we have shown that mefloquine disrupts calcium homeostasis in neurons by depletion of endoplasmic reticulum (ER) stores, followed by an influx of external calcium across the plasma membrane. In this study, we explore two hypotheses concerning the mechanism(s) of action of mefloquine. First, we investigated the possibility that mefloquine activates non-N-methyl-d-aspartic acid receptors and the inositol phosphate 3 (IP3) signaling cascade leading to ER calcium release. Second, we compared the disruptive effects of mefloquine on calcium homeostasis to those of ionomycin in neuronal and nonneuronal cells. Ionomycin is known to discharge the ER calcium store (through an undefined mechanism), which induces capacitative calcium entry (CCE). In radioligand binding assays, mefloquine showed no affinity for the known binding sites of several glutamate receptor subtypes. The pattern of neuroprotection induced by a panel of glutamate receptor antagonists was dissimilar to that of mefloquine. Both mefloquine and ionomycin exhibited dose-related and qualitatively similar disruptions of calcium homeostasis in both neurons and macrophages. The influx of external calcium was blocked by the inhibitors of CCE in a dose-related fashion. Both mefloquine and ionomycin upregulated the IP3 pathway in a manner that we interpret to be secondary to CCE. Collectively, these data suggest that mefloquine does not activate glutamate receptors and that it disrupts calcium homeostasis in mammalian cells in a manner similar to that of ionomycin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

A journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3

Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...

متن کامل

ANTICONVULSANT THERAPY-INDUCED ALTERATIONS IN CALCIUM HOMEOSTASIS

35 epileptic patients, aged 10 to 58 years (mean 23), who were taking anticonvulsant drugs were studied. The patients exhibited a 34% reduction in serum calcium levels, a 41 % increase in serum alkaline phosphatase activity and a slight but insignificant decrease in serum phosphate, compared to untreated controls. These changes appear to be related to the anticonvulsant drug taken, in the ...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2008